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Abstract—Multitrack audio mixing is an essential part of
music production and one of the first steps consist on pro-
cessing individual stems from raw recordings. In this paper,
we investigate this stage as a content-based transformation. We
explore which audio features are relevant to interpret this specific
process and which set of features gets modified by the mixing of
stems in the most consistent way. We show that the number
of features can be reduced with a procedure based on the
permutation importance method of random forest classifiers.
Thus, the selected audio features are used to train various
classification models and we analyse which set of features lead to
a better classification accuracy. We conclude that the underlying
characteristics of manipulating raw recordings into individual
stems can be described by this selected set of features.

I. INTRODUCTION

AUDIO MIXING is a highly cross-adaptive transformation

since the processing of an individual track depends on

the content of all tracks involved [1]. This transformation

is performed through a set of linear and nonlinear effects

which can be classified into five classes: gain, delay, panning,
equalisation (EQ) and dynamic range compression (DRC) [2].

We define a stem as a processed individual instrument track,

and a raw track as an unprocessed recording. This differs

from subgrouping practices where the mixing engineer groups

instruments into submixes in order to manipulate a large

number of tracks at once [3], [4].

Stem audio mixing is the processing of various raw tracks

into an individual stem. Each corresponding to a distinct

instrument or sound source; i.e. a guitar recorded via different

microphone positions is processed into one stereo stem.

The main goal of this step is to process the individual

source tracks separately prior to blend them into a final mix. In

this manner, this transformation can be seen as part of multi-

microphone signal processing, where the task is to combine the

available recordings in order to obtain a better representation

of the musical source. For a specific instrument source this

process can be described by Fig. I and (1).

s[n] =

M∑

m=1

Hm,c[n] ∗ rm[n] (1)

Where s is the individual processed stem, M is the total

number of raw recordings r, H is the chain of audio effects

and c their respective control values.
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Audio effects chain (H1,c −HM,c).

Fig. 1. Block diagram of the transformation of raw recordings into stems.

Content-based transformations are described in [5] as the

change a particular sound experiences when addressing any

type of information related to the audio source, i.e. audio is

analysed, meaningful features are extracted and the control

signals act to transform the sound and consequently to modify

the features. Such type of processing is also proposed by [6]

as adaptive audio effects.

Thus, in this work we investigate stem processing as a

content-based transformation, where we explore which set of

low-level audio features change in the most consistent way. We

use the selected audio features to train various classification

models and we analyse which set of features leads to a better

classification between raw and stem tracks. We investigate

whether these features can inform us about the fundamental

audio characteristics that sound engineers manipulate when

performing this step. In related work [7], we build on these

results by using the selected audio features to train various

multi-output regression models.

This paper is organised as follows. In Section II we present

the relevant literature. We formulate our problem and exper-

iment in Section III and IV respectively. Sections V and VI

show the results and their analysis. We conclude with Section

VII.

II. BACKGROUND

A. Audio Features

A survey of state-of-the-art audio features is presented in

[8]. In a similar way, [9] summarizes a large set of audio

features in global and frame-based audio descriptors.

Global features are calculated over the complete audio

signal and frame-based features are extracted from overlapping
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short time windows. The features are retrieved directly from

the audio signal or after a respective spectral, harmonic or

perceptual transformation. Finally, pooling is performed by

modelling them over time using statistics such as mean,

standard deviation, etc., [9], [10].

Also, audio features have been analysed for automatic

mixing tasks or to gain a better understanding of the mixing

process. [11] evaluated audio feature variance among instru-

ments, songs and sound engineers. Similarly, [12] proposed

that higher quality mixes and certain values of audio features

are related.

Sound quality classification of individual tracks was per-

formed in [13]. This, by using a selected set of audio features

and through different machine learning classifiers. Feature

selection is achieved through random forest classifiers in

[14], where the selected descriptors are used for automatic

subgrouping of multitrack audio.

To the best of our knowledge, feature selection has not

been implemented for individual stem processing from raw

recordings.

B. Random Forests and Variable Importance

Random Forests is an ensemble learning method for both

classification and regression problems. It consists of several

decision trees that are being constructed and trained using

bootstrap aggregating from samples and features of the learn-

ing data. Bootstrap aggregating, or bagging, is a subsampling

technique where multiple subsets are drawn at random, but

with replacement, from the learning set and consequently used

as new learning sets [15]. Therefore, the kth decision tree

(tk) is trained with a random subset of samples (lk) and each

node is split with a random subset of features (fk) from the

complete learning set (L) and feature set (F̄ ) respectively. In

this manner, a Random Forest classifier consists of a collection

of decision trees classifiers {clf(x,Θk), k = 1, ...} where Θk

are independent identically distributed (i.i.d) random vectors

containing the subsets lk and fk. For the input x, the selected

class is the mode class among the k tree outputs [16].

Performance is normally measured using the out-of-bag

(OOB) indicator, which is the average error for each trained

tree. It is calculated when tk predicts the output of a sample

that was not included in lk.

Random Forests are also used as indicators of variable

importance and two methods are mainly used; the Gini and

the permutation importance procedures. The Gini method

provides a ranking of the variables that is related to the

mean entropy loss in each split node when growing trees with

different subsets of fk. This method is much faster to calculate,

although it is more biased, more unstable and is not robust to

the variation of units of measure or the number of categories

among all variables [17]. The permutation importance method,

see (2), measures the average decrease of the accuracy on all

OOB indicators, when a value of fk is permuted randomly

[18].

V I(Fp) =
1

k

k∑

t=1

(OOBt −OOBp
t ) (2)

V I(Fp) is the variable importance of the feature Fp, and

OOBt and OOBp
t are the initial and permuted out-of-bag

errors respectively. This method is a more accurate indicator

for variable importance and it can be improved when bagging

is performed without replacement [17]. None of these methods

are robust when estimating the variable importance of highly

correlated variables [18].

III. PROBLEM FORMULATION

For a specific instrument source, consider M raw recordings

r and one processed stem s, for which we extract and pool

a set of audio features F r and F s respectively. We model

stem audio mixing as a content-based transformation of audio

features:

∑

M

r{F r} �−→ s{F s} (3)

We use a procedure based on Random Forests classifiers

(clf ) and the permutation variable importance method (V I)

to reduce the number of audio features. We attempt to find

two subsets of features: 1) important features for interpretation

of the transformation (fint), 2) a small number of features to

build a prediction model of the transformation (fpred).

V I{clf(F r, F s)} =⇒ fint, fpred (4)

The clf are trained with F r and F s as input vectors and

with the raw and stem labels as the output classes. Thus, V I
is used over the trained classifiers to obtaining the feature

subsets that get modified by the mixing of stems in the most

consistent way.

Finally, different machine learning classifiers are trained

with F , fint, and fpred and we explore which subset of

features leads to a better classification accuracy.

IV. EXPERIMENT

A. Dataset

The raw recordings and individual processed stems were

taken from [19], mostly based on [20] and following; a song

consists of the mix, stems and raw audio. 102 multitracks were

selected which correspond to genres of commercial western

music such as Rock, Folk, Jazz, Pop, Fusion and Rap. These

have been mixed by experienced sound engineers and recorded

in professional studios. Table I shows the dataset.

B. Feature Extraction

All tracks have a sampling frequency of 44.1 kHz, and we

proceeded to find the 10 seconds with the highest energy for

each stem track. Our assumption is that the most relevant

raw recording is the one with the highest energy. Thus, the

corresponding raw tracks were then analysed and the one with

the highest energy in the same 10 second interval was chosen.

We decided this was the best generalisation since there are

currently no proposals or established available rules on how

to mix raw recordings in order to obtain stem tracks.

The selected segments were downmixed to mono and

loudness normalisation was performed using replayGain and
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TABLE I
RAW AND STEM NUMBER OF TRACKS BY INSTRUMENT GROUP.

Group Instrument Source Raw Stem

Bass
electric bass 96 62

synth bass 12 6

Guitar

clean electric guitar 112 36

acoustic guitar 55 24

distorted electric guitar 78 20

banjo 2 2

Vocal

male singer 145 36

female singer 61 22

male rapper 12 2

Keys

piano 113 38

synth lead 51 17

tack piano 27 7

electric piano 3 3

an equal-loudness filter [21]. All the low-level descriptors

available in [22] were extracted. In total, 78 different features

were extracted, of which 15 are global and 63 are frame-based

descriptors. Most of the frame-based features were computed

with frame/hop sizes equal to 2048/1024 samples, although

there were some exceptions with sizes of 4096/2048 and

88200/44100 samples.

Pooling was performed over the frame-based features and

the following statistics were calculated: mean, median, vari-
ance, standard deviation, minimum, maximum, kurtosis, skew-
ness and mean and variance of the first and second derivatives.

Thus, a total of 1812 features |F | were extracted from each

stem and raw segment.

C. Feature Selection

In order to perform the selection of features, the procedure

proposed in [18] was followed. The following steps allowed

us to obtain fint and fpred.

1) Interpretation features:
- A total of 50 random forests classifiers with k = 2000

and |fk| = |F |/3 were built.

- The mean of the feature importances along with their

corresponding standard deviations were sorted in descending

order. Feature importance was calculated with (2).

- The threshold of importance was estimated by fitting the

standard deviation values with a decision tree regressor and

retaining only the features with importance value above this

threshold. These are the preselected features fp.

- A nested set of random forest classifiers was constructed

with the preselected features. This was done starting from the

most important feature and one feature was added for each

classifier that was built. All classifiers were fitted 50 times

and two labels were used in the classification task: raw and

stem. We selected the features that led to the minimum mean

OOB error. These are the interpretation features fint.
2) Prediction features:
- An ascending sequence of random forests classifiers was

built, only that this time a feature is only added if the decrease

of the OOB error is significant. This threshold is defined by

(5). It is the mean of the absolute value of the first derivative

of the OOB errors, corresponding to the models trained with

the set of features (fp ∩ fint)
c.

TABLE II
PARAMETERS OF THE CLASSIFIERS.

RF SVM LG

trees (k) |fk| kernel C gamma C

2000 |F̄ |/3 rbf 1 1/|F̄ | 1

THpred =
1

|fp| − |fint|
|fp|−1∑

j=|fint|
|OOB(j+1)−OOB(j)| (5)

- Each classifier is fitted 50 times, and the features of the

last model correspond to the prediction features fpred.

3) Raw and Stem classifiers:
Random Forests (RF), Support Vector Machine (SVM) and

Logistic Regression (LG) classifiers were trained with F ,

fint, and fpred. This was done using a test subset, which

corresponds to 10% of the original dataset and it was not used

in the feature selection process. Table II shows the parameters

for each classifier.

V. RESULTS

The feature selection procedure was applied to the Bass,

Guitar, Vocal and Keys instrument groups.

First, Fig. 2 shows the mean of importance in descending

order for the first 50 features for all four instrument types. Fig.

3 shows, for the sake of clarity, only the estimated threshold

and the decision tree regression curve for the Vocal’s standard

deviation of importance.

The threshold estimation leads to a set of 7, 28, 14 and

24 preselected features (|fp|) for Bass, Guitar, Vocal and

Keys respectively. In order to obtain fint, the nested set of

random forest classifiers was constructed using fp and the

OOB error is shown in Fig. 4. Likewise, fpred was obtained

by constructing an ascending set of random forest classifiers

whose OOB error is shown in Fig. 5. The list of interpretation

and prediction features is presented in Table III and IV.

In addition, a heatmap of correlation among the fpred of

each group of instruments is presented in Fig. 6. Finally, the

results of the different machine learning classifiers are shown

in Table V.

VI. ANALYSIS AND DISCUSSION

Fig. 2 shows that from 1812 features no more than 30 have

a significant mean of importance. fp is larger for Keys and

Guitar (> 20) than for Bass and Vocal (< 15). When selecting

fint the feature set size is further reduced, having 14 features

for the Keys and less than 7 features for Bass, Guitar and

Vocal. This is because the Keys group has more variation in the

instruments that compose it, since it contains a more diverse

type of sound sources. The size of fpred was fairly uniform

with 6 or fewer features across each instrument groups.

From Table III and IV, the order of the features fint is

aligned with the mean importance descending order obtained

from the permutation method. Whereas the fpred order of
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Fig. 2. Mean of importance for the first 50 ranked features for Bass, Guitar,
Vocal and Keys.

Fig. 3. Standard deviation of importance, decision tree regression (DTR)
curve and estimated threshold of importance for the first 350 features for the
Vocal group.

the features is based on features that reduce the most the

OOB error. For this reason, by reducing fint into fpred, the

procedure leads to a less biased order of features.

A. Prediction features

The majority of the set of features are associated to the

energy and the shape of the spectrum. Middle-low spectral
energy (150Hz-800Hz) measurements are present for the Gui-

tar and Keys, in addition to the total spectral energy and the

fourth barkband (300Hz) for the Keys. Also, the mean low
spectral energy (20Hz-150Hz) is among the prediction features

for the Bass. These frequency bands are as expected since

Fig. 4. OOB error and number of features for the nested set of random forests
classifiers.

Fig. 5. OOB error and number of features for the ascending set of random
forest classifiers.

they contain most of the energy of the respective instruments

[23]. The spectral contrast coefficients and valleys, which are

related to the shape of the spectrum [24], are also among the

results. The first spectral contrast valley was present for the

Bass and Guitar, and the second spectral contrast coefficient
for the Vocal.

Dynamic features associated with loudness were present for

the Guitar, Vocal and Keys. These are related to the rms, long-
term loudness (larm) [25], loudness stevens [26] and loudness
vickers [27]. For the Bass, effective duration [9] was present,

which is a global temporal indicator associated to the envelope

of an audio segment.

The 33rd harmonic pitch class profile (HPCP) was one of
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TABLE III
LIST OF INTERPRETATION FEATURES.

Group Name Pooling

Bass

0 - effective duration global
1 - hpcp (34) variance second derivative
2 - spectral energy low mean
3 - barkbands (3) max
4 - spectral contrast valley (0) max
5 - barkbands (1) standard deviation

Guitar

0 - spectral energy middle-low variance second derivative
1 - spectral energy middle-low max
2 - spectral energy low mean
3 - rms variance first derivative
4 - loudness stevens variance second derivative
5 - spectral energy middle-low mean first derivative
6 - spectral contrast valley (0) max

Vocal

0 - spectral contrast coeff. (1) variance
1 - spectral contrast coeff. (1) standard deviation
2 - larm variance first derivative
3 - spectral contrast valley (2) mean second derivative
4 - larm variance second derivative
5 - pitch salience mean first derivative
6 - pitch salience mean second derivative

Keys

0 - spectral energy max

1 - larm max
2 - spectral rms max
3 - equivalent sound level (leq) max
4 - loudness stevens max
5 - rms max
6 - spectral energy middle-low max
7 - loudness vickers max
8 - barkbands (4) max
9 - spectral energy middle-low standard deviation
10 - barkbands (11) standard deviation
11 - derivative SFX max derivative before max value
12 - barkbands (5) standard deviation
13 - spectral energy middle-low mean first derivative

TABLE IV
LIST OF PREDICTION FEATURES.

Group Name Pooling

bass
1 - spectral contrast valley (0) max

2 - effective duration global
3 - hpcp (33) variance second derivative
4 - spectral energy low mean

guitar

1 - rms variance first derivative
2 - spectral energy middle-low variance second derivative
3 - loudness stevens variance second derivative
4 - spectral energy middle-low mean first derivative
5 - spectral contrast valley (0) max
6 - loudness stevens mean second derivative

vocal
1 - larm variance first derivative
2 - spectral contrast coeff. (1) standard deviation
3 - pitch salience mean first derivative
4 - pitch salience mean second derivative

keys
1 - spectral energy middle-low variance
2 - spectral energy max
3 - loudness vickers max
4 - barkbands (4) max

the selected features for the Bass. The HPCP is calculated

from the spectral peaks and represents the intensities of various

subdivisions of semitone pitch classes [28]. For the Vocal, the

harmonic features are associated to the pitch salience, which

is a measure of the tone sensation linked to the autocorrelation

of the signal [29].

These spectral, temporal and harmonic features could be an

(a) (b)

(c) (d)

Fig. 6. Correlation heatmap among prediction features for (a) Bass, (b) Guitar,
(c) Vocal and (d) Keys. Colour intensity represents correlated features.

TABLE V
ACCURACY WITH DIFFERENT CLASSIFIERS AND SET OF FEATURES.

Inst. Features
Test score

RF SVC LG

Bass 1812 0.607 0.429 0.5

6 0.679 0.75 0.423

4 0.714 0.75 0.423

Guitar 1812 0.606 0.575 0.424

7 0.727 0.727 0.727

6 0.788 0.758 0.758

Vocal 1812 0.666 0.5 0.5

7 0.833 0.541 0.583

4 0.833 0.583 0.625

Keys 1812 0.653 0.5 0.5

14 0.653 0.692 0.807

4 0.692 0.653 0.730

indicator of common practices in stem audio mixing due to

the application of audio effects such as EQ, DRC, saturation

or pitch correction.

B. Correlated features

From Fig. 6, the Guitar and Keys presented the largest

number of correlated variables, whereas the Bass the least and

the Vocal only a pair of correlated features. For the Guitar, the

highest correlation occurs between variables related to rms and

loudness stevens values. All the features of the Keys seem to be

correlated and the maximum correlation is happening between

the middle-low and the total spectral energy. The features for

the Bass and Vocal presented a good indicator of uncorrelated

variables with the exception of the pitch salience features for

the Vocal tracks.

The high correlation indicators for Guitar and Keys are

associated with the variance between the instruments and their

roles within the different genres, i.e. the lead folk electric gui-

tar is processed differently than a backing pop electric guitar.

On the other hand, Bass and Vocal indicators of uncorrelation
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are related to a more uniform processing method between

genres. This is also noticeable with the OOB behaviour from

Fig. 4 and Fig. 5.

In addition, fint shows a greater number of correlated

features. For example, the Keys have 5 features related to a

maximum loudness indicator, while fpred only has one feature

related to loudness. This behaviour is shared with the spectral

and temporal features of each group of instruments.

C. Quantitative performance

From Table V it can be seen that the classifiers tended

to achieve a better performance with fpred and the highest

accuracy was for the Vocal group. The Keys performed best

with fint for SVC and LG, although the fpred had a higher

test score for RF.

Overall, when discriminating between raw and stem tracks,

the RF classifier achieved the highest accuracy with fpred.

Therefore, we have found the subset of audio features that

most consistently describes the mixing of stems from raw

recordings. In this way, these features can represent an audio

feature space that is being steadily mapped by this process, and

then can lead to a prediction model of this transformation.

VII. CONCLUSION

In this paper, we determined the sets of audio features that

can describe stem audio mixing as a content-based transfor-

mation. We have extracted a set of 1812 audio features from

Bass, Guitar, Vocal and Keys raw recordings and stems and

we have reduced it to 6 or fewer audio features. We compared

the performance of different machine learning classifiers when

using the entire and the reduced audio feature sets and we

showed that the models improved by an average of 12.38%.

The features found are related to spectral, dynamic and har-

monic audio characteristics which could be associated with

EQ, DRC, saturation and pitch-correction audio effects.

In future work, the feature set obtained can be used to

train machine learning regression systems that can predict the

value of the respective audio characteristics and thus assist the

sound engineer during the stem audio mixing process. Also,

an additional study could be done to determine the applied

combination of audio effects and its relation to the audio

features encountered. Similarly, this method can be extended

to stereo features in such way that panning procedures are

explored. The method can be improved by having a more

robust performance to highly correlated features. Finally, an

improvement in the selection of raw recordings can also be

explored, so that more than one is taken into account during

feature extraction.
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